
One-parameter mechanisms, with 
an application to the SPT problem 

 



 Given: an undirected graph G=(V,E) such that each 
edge is owned by a distinct player, and a source 
node s; we assume that player’s private type t(e) is 
the positive cost (length) of the edge, and her 
valuation function is equal to her negated type if 
edge is selected in the solution, and 0 otherwise.  

 Question: design an efficient (in terms of time 
complexity) truthful mechanism in order to find a 
shortest-path tree rooted at s in Gt=(V,E,t). 

 
The private-edge Shortest-
Paths Tree (SPT) problem 



More formally… 

 F: set of all spanning trees of G rooted at s 

 For any TF, we want to maximize 

 f(t,T) = - dT(s,v) = - te ║e║ 

where ║e║ is the set of source-node paths in 
T containing edge e 

vV 

On the other hand, ve(te,T)=-te  if eE(T), 0 
otherwise (this models the multicast protocol) 

f(t,T)   ve(te,T) = - te 

eE(T) 

eE(T) 

 non-utilitarian problem! 
eE(T) 



One-parameter MD problems 

This is a mechanism design problem in which: 
1. The type owned by each player i is a single parameter 

ti 

2. The valuation function of player i w.r.t. to an output oX 
is 

vi(ti,o)= ti wi(o) 

 where wi(o)≥0 is the workload function for i. Notice 
that for the sake of simplifying the notation, we are now 
assuming that the valuation function is positive, and so in 
the following we will invert – and +, and max with min, and 
so the utility will be now equal to the payment minus the 
valuation 



The SPT problem is one-parameter 

 First of all, the type owned by each player is a 
single real-value number  

 Second, the valuation function of a player w.r.t. 
to a tree T is: 
 
 ve(te,T)= 

 
 

i.e., ve(te,T)= te we(T), where  
 

te if e  E(T) 

0 otherwise 

1 
if e  E(T) 

0 otherwise 
we(T)= 

Multicast protocol 

 The SPT problem is a one-parameter (OP) problem! 



A necessary condition for designing 
OP truthful mechanisms  

Theorem (R.B. Myerson, 1981) 

A mechanism M=<g,p> for a minimization one-
parameter problem is truthful only if g is 
monotone,  i.e.,  player i, wi(g(r-i,ri)) is non-
increasing w.r.t. ri, for every r-i=(r1,…,ri-1, 
ri+1,…,rN). 



Proof 

(by contradiction) 

Assume that there exists a truthful mechanism M=<g,p> 
such that g is non-monotone. 

If g is non-monotone there exists a player i and a vector r-i  
s.t. wi(r-i,ri) is not monotonically non-increasing w.r.t. ri 



1. If ti=x and ri=ti  vi(ti,o) = ti wi(o) = x wi(g(r-i,x)) 

2. If ti=y and ri=ti  vi(ti,o) = y wi(g(r-i,y)) 

3. If ti=x and ri=y  vi(ti,o) = x wi(g(r-i,y)), i.e., i 
increases her valuation (i.e., her cost) by A 

4. If ti=y and ri=x  vi(ti,o) = y wi(g(r-i,x)), i.e., i 
decreases her cost by A+k 

 

A k 

x y 

wi(g(r-i,y)) 

wi(g(r-i,x)) 

wi(g(r-i,ri)) 

ri 

Proof (cont’d) 

cost of 
ai case 3 cost of  

ai case 4 



 Let ∆p=pi(g(r-i,y)) - pi(g(r-i,x)) 
 If M is truthful it must be: 
 ∆p  A (since otherwise when ti=x, player i will report y, since in this 

case her valuation will increase by A, and since ∆p>A, her utility (i.e., 
the payment minus the valuation) will increase (i.e., ∆u = ∆p-∆v > 0), 
against the assumption that M is truthful!) 

 ∆p ≥ A+k (since otherwise when ti=y, player i will report x, since in this 
case her cost will decrease by A+k, and since ∆p<A+k, this means that 
the payment’s decrease is less than the cost’s decrease, and so her 
utility will increase , against the assumption that M is truthful!) 

… but k is strictly positive! 
 

A k 

x y ri 

Proof (cont’d) 

Contradiction: M cannot be truthful, i.e., g must be monotone! 

wi(g(r-i,y)) 

wi(g(r-i,x)) 

wi(g(r-i,ri)) 



One-parameter mechanisms 

• g: is any monotone algorithm for the 
underlying one-parameter problem  

• pi(r) = hi(r-i) + ri wi(r) - ∫wi(r-i,z) dz 
0 

ri 

hi(r-i): arbitrary function independent of ri 

For the sake of simplifying the notation: 
We will write wi(r) in place of wi(g(r)) 

We will write pi(r) in place of pi(g(r)) 

Definition: A one-parameter (OP) 
mechanism is a pair M=<g,p> such that:  



Theorem 2: An OP-mechanism for an OP-

problem is truthful. 

Proof: We show that the utility of a player i can only 
decrease when i lies 

Payment returned to i (when she reports  ri) is: 

pi(r) = hi(r-i) + ri wi(r) - ∫   wi(r-i,z) dz 
0 

ri 

Indipendent of ri 

For the purpose of our proof, we set hi(r-i)=0  
(notice this will produce negative utilities) 

Truthfulness of OP-mechanisms 



 ui(ti,g(r-i,ti))= pi(r-i,ti)-vi(ti, g(r-i,ti))=  
ti wi(r-i,ti)-∫ wi(r-i,z) dz-ti wi(r-i,ti) =-∫ wi(r-i,z) dz 
 If i reports x>ti: 

 Her valuation becomes: C = ti wi(r-i,x) 

 Her payment becomes: P= x wi(r-i,x) - ∫  wi(r-i,z) dz 
  ui(ti,g(r-i,x))= P-C  the non-truthful utility is given by the 

negated green-pink-red region  i is loosing G 

 

Proof (cont’d) 

ti 

wi(r-i,ti) 

x 

wi(r-i,x) 

0 

ti 

C 

0 

x 

0 

ti 

G 
-P 

The truthful 
utility is equal 
to this negated 
area 

The non-truthful 
payment is equal to 
this negated area 

wi(r-i,ri) 



 ui(ti,g(r-i,ti))=-∫  wi(r-i,z) dz 
 If i reports x<ti 

 Her valuation becomes C= ti wi(r-i,x) 

 Her payment becomes P=x wi(r-i,x) -∫wi(r-i,z) dz 

  ui(ti,g(r-i,x))= P-C  i is loosing G 
 

Proof (cont’d) 

ti 

wi(r-i,ti) 

0 

ti 

G 

C 

-P 

x 

wi(r-i,x) Player i has no incentive to lie! 

The non-truthful 
payment is equal to 
this negated area 

0 

x 

wi(r-i,ri) 



On the hi(r-i) function 

Once again, we want to guarantee voluntary participation (VP) 

But when player i reports ri, her payment is: 

pi(r) = hi(r-i) + ri wi(r) - ∫ wi(r-i,z) dz 
0 

ri 

If we set hi(r-i)=   ∫ wi(r-i,z) dz, 
0 

∞ 

pi(r) = ri wi(r) + ∫   wi(r-i,z) dz 
ri 

∞ 

the payment becomes: 

 The utility of player i when reporting the true becomes: 

ui(ti,g(r)) = ∫  wi(r-i,z) dz ≥ 0. 
ti 

∞ 



Summary: VCG vs OP 

 VCG-mechanisms: arbitrary valuation 
functions and types, but only 
utilitarian problems 

 OP-mechanisms: arbitrary social-
choice function, but only one-
parameter types and workloaded 
valuation functions  

 If a problem is both utilitarian and 
one-parameter  VCG and OP 
coincide! 



A one-parameter mechanism 
for the private-edge SPT 

problem 



The one-parameter SPT problem 

 F: set of spanning tree rooted at s 
 For any T  F, we aim to minimize (remember 

indeed that we have changed sign to the valuations) 

  f(t,T)=   dT(s,v) =  te ║e║ 

 
 

 ve(te,T)= 
 
 

i.e., ve(te,T)= te we(T), with 
 

vV eE(T) 

te if e  E(T) 

0 otherwise 

1 
if e  E(T) 

0 otherwise 
we(T)= 



A corresponding one-parameter 
mechanism 

 MSPT= <g,p> 
 g: given the input graph G, the source node s, 

and the reported types r, compute an SPT 
SG(s) of G=(V,E,r) by using Dijkstra’s 
algorithm; 

 p: for every e  E, let ae  denote the agent 
owning edge e, and let re be her reported type. 
Then, the payment for ae is: 

pe(r)=rewe(r) + ∫   we(r-e,z) dz 
re 

∞ 

  
 so that VP is guaranteed (ue=pe-ve0). 



MSPT is truthful 

MSPT is truthful, since it is an OP-mechanism. Indeed, 
Dijkstra’s algorithm is monotone, since the workload for ae 
has always the following shape: 
 

1 

Өe : threshold value 

where Өe is the value such that, once fixed r-e: 
• if ae reports at most Өe, then e is selected in the SPT 
• if ae reports more than Өe, then e is not selected in the 

SPT 



On the payments 

 pe=0, if e is not selected 

 

 

 pe=Өe, if e is selected 

1 

Өe : threshold value re 

pe = re we(r) + ∫   we(r-e,z) dz = re + Өe - re = Өe 
∞ 

pe = re we(r) + ∫   we(r-e,z) dz = 0+0 = 0 re 

∞ 

re 

re 



On the threshold values for the SPT problem 

Let e=(u,v) be an edge in SG(s)  (with u closer to s 
than v) 

 e remains in SG(s) until e is used to reach v from s 

    Өe=dG-e(s,v)-dG(s,u) 
Example 

1 

1 

2 
3 

2 

6 

s 

v 

u 

e 

re =1 

1 

3-ε 

2 
3 

2 

6 

s 

v 

u 

e 

re =3-ε 

1 

3+ε 

2 
3 

2 

6 

s 

v 

u 

e 

re =3+ε 

 Өe = 3 



A trivial solution to find Өe  

e=(u,v) SG(s) we run the Dijkstra’s 
algorithm on G-e=(V,E\{e},r) to find dG-e(s,v) 

Time complexity: k=n-1 edges multiplied by 
O(m + n log n) time (Dijkstra with Fibonacci 
Heaps): O(mn + n2 log n) time 

The improved solution will cost as much as:  

O(m + n log n) time 



Definition of Өe  
s 

dG-e(s,v)=    min    {dG(s,x)+ rf +dG(y,v)} 
f=(x,y)C(e) 

x 

y 

u 

v 

e 

f 

Observation: the quality of a crossing edge depends on the 
considered edge e, since of the quantity dG(y,v) 



 Computing dG-e(s,v) (and then Өe) is equivalent to finding 
an edge f* such that: 

Definition of Өe (cont’d) 

f*=   arg min    {dG(s,x)+ rf +dG (y,v)} 
f=(x,y)C(e) 

=   arg min    {dG(s,x)+ rf +dG (y,v)+dG(s,v)} 
f=(x,y)C(e) 

Since dG(s,v) is 
independent of f 

call it k(f) 

Observation: k(f) is now a value univocally associated with edge f and is 
independent of e: it is the length of the fundamental cycle of f w.r.t. 
SG(s), and it will stay the same for all the edges of SG(s) on such a cycle 
(i.e., edges of SG(s) for which f is a crossing edge) 

=   arg min   {dG(s,x)+ rf +dG(s,y)} 
f=(x,y)C(e) 



Definition of k(f)  

s 

k(f) = dG(s,x)+rf+dG(s,y) 

x 

y 

u 

v 

e 

f 

k(f) will stay the 
same for all the 
edges on the 
green and on the 
red path: is the 
length of the 
fundamental 
cycle! 



Computing the threshold 

 Once again, we build a transmuter (w.r.t. SG(s)), 
where now sink nodes are labelled with k(f) 
(instead of w(f) as in the MST case), and we 
process the transmuter in reverse topological 
order 

 At the end of the process, every edge e  
SG(s) will remain associated with its 
replacement edge f*, and 

Өe= (k(f*)-dG(s,v)) - dG(s,u) 
 

 Time complexity: O(m (m,n)), once that dG are 
given 

dG-e(s,v) 



Theorem 
MSPT can be implemented in O(m + n log n) time. 

Proof: 

Time complexity of g: O(m + n log n)    
(Dijkstra with Fibonacci Heaps) 

Computing all the payments costs:  
O(m (m,n))=O(m + n log n) time 

Since (m,n) is constant when  m=(n log n): indeed, 
(m,n)= min{i>0: A(i, m/n)>log n}, and then  
(n log n,n)= min{i>0: A(i, log n)>log n}=1, since A(1, log 
n)=2log n=n>log n. 

Analysis 



This is the end 

My only friend, the end… 

                 (The Doors, 1967) 

 

Thanks for your attention! 


