
One-parameter mechanisms, with
an application to the SPT problem

 Given: an undirected graph G=(V,E) such that each
edge is owned by a distinct player, and a source
node s; we assume that player’s private type t(e) is
the positive cost (length) of the edge, and her
valuation function is equal to her negated type if
edge is selected in the solution, and 0 otherwise.

 Question: design an efficient (in terms of time
complexity) truthful mechanism in order to find a
shortest-path tree rooted at s in Gt=(V,E,t).

The private-edge Shortest-
Paths Tree (SPT) problem

More formally…

 F: set of all spanning trees of G rooted at s

 For any TF, we want to maximize

 f(t,T) = - dT(s,v) = - te ║e║

where ║e║ is the set of source-node paths in
T containing edge e

vV

On the other hand, ve(te,T)=-te if eE(T), 0
otherwise (this models the multicast protocol)

f(t,T) ve(te,T) = - te

eE(T)

eE(T)

 non-utilitarian problem!
eE(T)

One-parameter MD problems

This is a mechanism design problem in which:
1. The type owned by each player i is a single parameter

ti

2. The valuation function of player i w.r.t. to an output oX
is

vi(ti,o)= ti wi(o)

 where wi(o)≥0 is the workload function for i. Notice
that for the sake of simplifying the notation, we are now
assuming that the valuation function is positive, and so in
the following we will invert – and +, and max with min, and
so the utility will be now equal to the payment minus the
valuation

The SPT problem is one-parameter

 First of all, the type owned by each player is a
single real-value number

 Second, the valuation function of a player w.r.t.
to a tree T is:

 ve(te,T)=

i.e., ve(te,T)= te we(T), where

te if e E(T)

0 otherwise

1
if e E(T)

0 otherwise
we(T)=

Multicast protocol

 The SPT problem is a one-parameter (OP) problem!

A necessary condition for designing
OP truthful mechanisms

Theorem (R.B. Myerson, 1981)

A mechanism M=<g,p> for a minimization one-
parameter problem is truthful only if g is
monotone, i.e., player i, wi(g(r-i,ri)) is non-
increasing w.r.t. ri, for every r-i=(r1,…,ri-1,
ri+1,…,rN).

Proof

(by contradiction)

Assume that there exists a truthful mechanism M=<g,p>
such that g is non-monotone.

If g is non-monotone there exists a player i and a vector r-i
s.t. wi(r-i,ri) is not monotonically non-increasing w.r.t. ri

1. If ti=x and ri=ti vi(ti,o) = ti wi(o) = x wi(g(r-i,x))

2. If ti=y and ri=ti vi(ti,o) = y wi(g(r-i,y))

3. If ti=x and ri=y vi(ti,o) = x wi(g(r-i,y)), i.e., i
increases her valuation (i.e., her cost) by A

4. If ti=y and ri=x vi(ti,o) = y wi(g(r-i,x)), i.e., i
decreases her cost by A+k

A k

x y

wi(g(r-i,y))

wi(g(r-i,x))

wi(g(r-i,ri))

ri

Proof (cont’d)

cost of
ai case 3 cost of

ai case 4

 Let ∆p=pi(g(r-i,y)) - pi(g(r-i,x))
 If M is truthful it must be:
 ∆p A (since otherwise when ti=x, player i will report y, since in this

case her valuation will increase by A, and since ∆p>A, her utility (i.e.,
the payment minus the valuation) will increase (i.e., ∆u = ∆p-∆v > 0),
against the assumption that M is truthful!)

 ∆p ≥ A+k (since otherwise when ti=y, player i will report x, since in this
case her cost will decrease by A+k, and since ∆p<A+k, this means that
the payment’s decrease is less than the cost’s decrease, and so her
utility will increase , against the assumption that M is truthful!)

… but k is strictly positive!

A k

x y ri

Proof (cont’d)

Contradiction: M cannot be truthful, i.e., g must be monotone!

wi(g(r-i,y))

wi(g(r-i,x))

wi(g(r-i,ri))

One-parameter mechanisms

• g: is any monotone algorithm for the
underlying one-parameter problem

• pi(r) = hi(r-i) + ri wi(r) - ∫wi(r-i,z) dz
0

ri

hi(r-i): arbitrary function independent of ri

For the sake of simplifying the notation:
We will write wi(r) in place of wi(g(r))

We will write pi(r) in place of pi(g(r))

Definition: A one-parameter (OP)
mechanism is a pair M=<g,p> such that:

Theorem 2: An OP-mechanism for an OP-

problem is truthful.

Proof: We show that the utility of a player i can only
decrease when i lies

Payment returned to i (when she reports ri) is:

pi(r) = hi(r-i) + ri wi(r) - ∫ wi(r-i,z) dz
0

ri

Indipendent of ri

For the purpose of our proof, we set hi(r-i)=0
(notice this will produce negative utilities)

Truthfulness of OP-mechanisms

 ui(ti,g(r-i,ti))= pi(r-i,ti)-vi(ti, g(r-i,ti))=
ti wi(r-i,ti)-∫ wi(r-i,z) dz-ti wi(r-i,ti) =-∫ wi(r-i,z) dz
 If i reports x>ti:

 Her valuation becomes: C = ti wi(r-i,x)

 Her payment becomes: P= x wi(r-i,x) - ∫ wi(r-i,z) dz
 ui(ti,g(r-i,x))= P-C the non-truthful utility is given by the

negated green-pink-red region i is loosing G

Proof (cont’d)

ti

wi(r-i,ti)

x

wi(r-i,x)

0

ti

C

0

x

0

ti

G
-P

The truthful
utility is equal
to this negated
area

The non-truthful
payment is equal to
this negated area

wi(r-i,ri)

 ui(ti,g(r-i,ti))=-∫ wi(r-i,z) dz
 If i reports x<ti

 Her valuation becomes C= ti wi(r-i,x)

 Her payment becomes P=x wi(r-i,x) -∫wi(r-i,z) dz

 ui(ti,g(r-i,x))= P-C i is loosing G

Proof (cont’d)

ti

wi(r-i,ti)

0

ti

G

C

-P

x

wi(r-i,x) Player i has no incentive to lie!

The non-truthful
payment is equal to
this negated area

0

x

wi(r-i,ri)

On the hi(r-i) function

Once again, we want to guarantee voluntary participation (VP)

But when player i reports ri, her payment is:

pi(r) = hi(r-i) + ri wi(r) - ∫ wi(r-i,z) dz
0

ri

If we set hi(r-i)= ∫ wi(r-i,z) dz,
0

∞

pi(r) = ri wi(r) + ∫ wi(r-i,z) dz
ri

∞

the payment becomes:

 The utility of player i when reporting the true becomes:

ui(ti,g(r)) = ∫ wi(r-i,z) dz ≥ 0.
ti

∞

Summary: VCG vs OP

 VCG-mechanisms: arbitrary valuation
functions and types, but only
utilitarian problems

 OP-mechanisms: arbitrary social-
choice function, but only one-
parameter types and workloaded
valuation functions

 If a problem is both utilitarian and
one-parameter VCG and OP
coincide!

A one-parameter mechanism
for the private-edge SPT

problem

The one-parameter SPT problem

 F: set of spanning tree rooted at s
 For any T F, we aim to minimize (remember

indeed that we have changed sign to the valuations)

 f(t,T)= dT(s,v) = te ║e║

 ve(te,T)=

i.e., ve(te,T)= te we(T), with

vV eE(T)

te if e E(T)

0 otherwise

1
if e E(T)

0 otherwise
we(T)=

A corresponding one-parameter
mechanism

 MSPT= <g,p>
 g: given the input graph G, the source node s,

and the reported types r, compute an SPT
SG(s) of G=(V,E,r) by using Dijkstra’s
algorithm;

 p: for every e E, let ae denote the agent
owning edge e, and let re be her reported type.
Then, the payment for ae is:

pe(r)=rewe(r) + ∫ we(r-e,z) dz
re

∞

 so that VP is guaranteed (ue=pe-ve0).

MSPT is truthful

MSPT is truthful, since it is an OP-mechanism. Indeed,
Dijkstra’s algorithm is monotone, since the workload for ae
has always the following shape:

1

Өe : threshold value

where Өe is the value such that, once fixed r-e:
• if ae reports at most Өe, then e is selected in the SPT
• if ae reports more than Өe, then e is not selected in the

SPT

On the payments

 pe=0, if e is not selected

 pe=Өe, if e is selected

1

Өe : threshold value re

pe = re we(r) + ∫ we(r-e,z) dz = re + Өe - re = Өe
∞

pe = re we(r) + ∫ we(r-e,z) dz = 0+0 = 0 re

∞

re

re

On the threshold values for the SPT problem

Let e=(u,v) be an edge in SG(s) (with u closer to s
than v)

 e remains in SG(s) until e is used to reach v from s

 Өe=dG-e(s,v)-dG(s,u)
Example

1

1

2
3

2

6

s

v

u

e

re =1

1

3-ε

2
3

2

6

s

v

u

e

re =3-ε

1

3+ε

2
3

2

6

s

v

u

e

re =3+ε

 Өe = 3

A trivial solution to find Өe

e=(u,v) SG(s) we run the Dijkstra’s
algorithm on G-e=(V,E\{e},r) to find dG-e(s,v)

Time complexity: k=n-1 edges multiplied by
O(m + n log n) time (Dijkstra with Fibonacci
Heaps): O(mn + n2 log n) time

The improved solution will cost as much as:

O(m + n log n) time

Definition of Өe
s

dG-e(s,v)= min {dG(s,x)+ rf +dG(y,v)}
f=(x,y)C(e)

x

y

u

v

e

f

Observation: the quality of a crossing edge depends on the
considered edge e, since of the quantity dG(y,v)

 Computing dG-e(s,v) (and then Өe) is equivalent to finding
an edge f* such that:

Definition of Өe (cont’d)

f*= arg min {dG(s,x)+ rf +dG (y,v)}
f=(x,y)C(e)

= arg min {dG(s,x)+ rf +dG (y,v)+dG(s,v)}
f=(x,y)C(e)

Since dG(s,v) is
independent of f

call it k(f)

Observation: k(f) is now a value univocally associated with edge f and is
independent of e: it is the length of the fundamental cycle of f w.r.t.
SG(s), and it will stay the same for all the edges of SG(s) on such a cycle
(i.e., edges of SG(s) for which f is a crossing edge)

= arg min {dG(s,x)+ rf +dG(s,y)}
f=(x,y)C(e)

Definition of k(f)

s

k(f) = dG(s,x)+rf+dG(s,y)

x

y

u

v

e

f

k(f) will stay the
same for all the
edges on the
green and on the
red path: is the
length of the
fundamental
cycle!

Computing the threshold

 Once again, we build a transmuter (w.r.t. SG(s)),
where now sink nodes are labelled with k(f)
(instead of w(f) as in the MST case), and we
process the transmuter in reverse topological
order

 At the end of the process, every edge e
SG(s) will remain associated with its
replacement edge f*, and

Өe= (k(f*)-dG(s,v)) - dG(s,u)

 Time complexity: O(m (m,n)), once that dG are
given

dG-e(s,v)

Theorem
MSPT can be implemented in O(m + n log n) time.

Proof:

Time complexity of g: O(m + n log n)
(Dijkstra with Fibonacci Heaps)

Computing all the payments costs:
O(m (m,n))=O(m + n log n) time

Since (m,n) is constant when m=(n log n): indeed,
(m,n)= min{i>0: A(i, m/n)>log n}, and then
(n log n,n)= min{i>0: A(i, log n)>log n}=1, since A(1, log
n)=2log n=n>log n.

Analysis

This is the end

My only friend, the end…

 (The Doors, 1967)

Thanks for your attention!

